Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2022

Bayesian approach for auroral oval reconstruction from ground-based observations

Naked eye observations of aurorae might be used to obtain information on the large-scale magnetic field of the Earth at historic times. Their abundance may also help bridge gaps in observational time-series of proxies for solar activity such as the sunspot number or cosmogenic isotopes. With information derived from aurora observations like observing site, time of aurora sighting and position on the sky we can reconstruct the auroral oval. Since aurorae are correlated with geomagnetic indices like the Kp index, it is possible to obtain information about the terrestrial magnetic field in the form of the position of the magnetic poles as well as the magnetic disturbance level. Here we present a Bayesian approach to reconstruct the auroral oval from ground-based observations by using two different auroral oval models. With this method we can estimate the position of the magnetic poles in corrected geomagnetic coordinates as well as the Kp index. The method is first validated on synthetic observations before it is applied to four modern geomagnetic storms between 2003 and 2017 where ground-based reports and photographs were used to obtain the necessary information. Based on the four modern geomagnetic storms we have shown, that we are able to reconstruct the pole location with an average accuracy of ≈2° in latitude and ≈11° in longitude. The Kp index can be inferred with a precision of one class. The future goal is to employ the method to historical storms, where we expect somewhat higher uncertainties, since observations may be less accurate or not favorably distributed.

Wagner, D.; Neuhäuser, R.; Arlt, R.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: feb

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105824

auroral oval; Magnetic storms; space weather

Spatial-Temporal Behaviors of Large-Scale Ionospheric Perturbations During Severe Geomagnetic Storms on September 7–8 2017 Using the GNSS, SWARM and TIE-GCM Techniques

Geomagnetic storms on 7–8 September 2017 triggered severe ionospheric disturbances that had a serious effect on satellite navigation and radio communication. Multiple observations derived from Global Navigation Satellite System receivers, Earth s Magnetic Field and Environment Explorers (SWARM) and the Thermosphere-Ionosphere -Electrodynamics General Circulation Model s simulations are utilized to investigate the spatial-temporal ionospheric behaviors under storm conditions. The results indicate that the electron density in the Asia-Australia, Europe-Africa and America sectors suddenly changed with the Bz southward excursion, and the ionosphere over low-middle latitudes under the sunlit hemisphere is easily affected by the disturbed magnetic field. The SWARM observations verified the remarkable double-peak structure of plasma enhancements over the equator and middle latitudes. The physical mechanism of low-middle plasma disturbances can be explained by a combination effect of equatorial electrojets, vertical E × B drifts, meridional wind and thermospheric O/N2 change. Besides, the severe storms triggered strong Polar plasma disturbances on both dayside and nightside hemispheres, and the Polar disturbances had a latitudinal excursion associated with the offset of geomagnetic field. Remarkable plasma enhancements at the altitudes of 100–160 km were also observed in the auroral zone and middle latitudes (\textgreater47.5°N/S). The topside polar ionospheric plasma enhancements were dominated by the O+ ions. Furthermore, the TIE-GCM s simulations indicate that the enhanced vertical E × B drifts, cross polar cap potential and Joule heating play an important role in generating the topside plasma perturbations.

Li, Wang; Zhao, Dongsheng; He, Changyong; Hancock, Craig; Shen, Yi; Zhang, Kefei;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029830

hemispheric asymmetry; ionospheric disturbances; Magnetic storms; thermospheric composition changes; TIE-GCM

2013

A comparative study of TEC response for the African equatorial and mid-latitudes during storm conditions

The solar wind effects on the Earth\textquoterights environment are studied for their basic scientific values and crucial practical impacts on technological systems. This paper reports results of Total Electron Content (TEC) changes during two successive ionospheric storms of 7\textendash12 November 2004 using GPS data derived from dual frequency receivers located at African equatorial and midlatitudes. In the geographic coordinate system, equatorial TEC variability is considered over Libreville (0.36\textdegreeN, 9.67\textdegreeE), Gabon and Mbarara (0.60\textdegreeS, 30.74\textdegreeE), Uganda. TEC over midlatitude stations Sutherland (32.38\textdegreeS, 20.81\textdegreeE) and Springbok (29.67\textdegreeS, 17.88\textdegreeE), South Africa are analysed. The analysis of the storm time ionospheric variability over South Africa was undertaken by comparing the critical frequency of the F2 layer (foF2) and the peak height of the F2 layer (hmF2) values obtained from Grahamstown (33.30\textdegreeS, 26.53\textdegreeE) and Madimbo (22.4\textdegreeS, 30.9\textdegreeE) ionosonde measurements. During the analysed storm period it is observed that GPS TEC for midlatitudes was depleted significantly with a corresponding depletion in foF2, due to the reduction in GUVI O/N2 ratio as observed from its global maps. Over the equatorial latitudes, positive storm effects are more dominant especially during the storm main phase. Negative storm effects are observed over both mid and equatorial latitudes during the recovery phase. A shift in equatorial TEC enhancement (from one GPS station to another) is observed during magnetic storms and has been partially attributed to passage of Travelling Ionospheric Disturbances (TIDs). Magnetometer data over the International Real-time Magnetic Observatory Network (intermagnet) station, Addis Ababa, AAE (9.03\textdegreeN, 38.77\textdegreeE) has been used to help with the explanation of possible causes of equatorial ionospheric TEC dynamics during the analysed magnetic storm period.

Habarulema, John; McKinnell, Lee-Anne; a, Dalia; Zhang, Yongliang; Seemala, Gopi; Ngwira, Chigomezyo; Chum, Jaroslav; Opperman, Ben;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 09/2013

YEAR: 2013     DOI: 10.1016/j.jastp.2013.05.008

African equatorial and midlatitude TEC dynamics; Magnetic storms; TIDs

2012

Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil

Equatorial ionospheric responses during two magnetic storms of moderate intensity are investigated, for the first time, by conjugate point observations in Brazil. The study focuses on storm-induced changes in the evening prereversal vertical drift, thermospheric trans-equatorial winds, spread F/plasma bubble irregularity development, electron density/plasma frequency heights, the EIA strength, and zonal plasma drifts. It is based on data obtained from five Digisondes operated in Brazil, three of them being part of a conjugate point equatorial experiment (COPEX) involving a dip equatorial and two magnetic conjugate sites at \textpm12\textdegree. The other two were operated at the equatorial ionization anomaly (EIA) trough and crest locations at nearby magnetic meridians. The results bring out, and clarify, many outstanding aspects of the strong influence of storm time electric fields on the equatorial ionosphere at different phases of the two long lasting storm sequences. During both storms prompt penetration electric fields dominated the ionospheric response features as compared to the disturbance wind dynamo effects that were not very conspicuous. An under-shielding (over-shielding) electric field occurring in the evening hours causes enhancement (suppression) of the prereversal vertical drift and post sunset spread F/plasma bubble generation. The same electric fields cause post sunset EIA enhancement and suppression, respectively. Post sunset (post midnight) spread F can develop from under-shielding (over-shielding) electric fields, while it can be disrupted by over-shielding (under-shielding) electric field. Trans-equatorial winds are found to be ineffective to stabilize the post sunset F region against the destabilizing effect of strong prereversal vertical drift. Storm time westward plasma drifts are found to be driven by prompt penetration eastward electric fields (through their effect of inducing vertical Hall electric fields), rather than by a disturbance westward thermospheric wind during these storms.

Abdu, M.; Batista, I.; Bertoni, F.; Reinisch, B.; Kherani, E.; Sobral, J.;

Published by: Journal of Geophysical Research      Published on: 05/2012

YEAR: 2012     DOI: 10.1029/2011JA017174

Equatorial ionosphere; Magnetic storms; plasma bubbles; plasma drifts; spread F; transequatorial winds

2007

Ionospheric E-region response to solar-geomagnetic storms observed by TIMED/SABER and application to IRI storm-model development

The large thermospheric infrared radiance enhancements observed from the TIMED/SABER experiment during recent solar storms provide an exciting opportunity to study the influence of solar-geomagnetic disturbances on the upper atmosphere and ionosphere. In particular, nighttime enhancements of 4.3μm emission, due to vibrational excitation and radiative emission by NO+, provide an excellent proxy to study and analyze the response of the ionospheric E-region to auroral electron dosing and storm-time enhancements to the E-region electron density. In this paper, we give a status report of on-going work on model and data analysis methodologies of deriving NO+ 4.3μm volume emission rates, a proxy for the storm-time E-region response, and the approach for deriving an empirical storm-time correction to IRI E-region NO+ and electron densities.

Mertens, Christopher; Mast, Jeffrey; Winick, Jeremy; Russell, James; Mlynczak, Martin; Evans, David;

Published by: Advances in Space Research      Published on:

YEAR: 2007     DOI: https://doi.org/10.1016/j.asr.2006.09.032

Ionosphere; Magnetic storms; Ion-neutral chemistry; Non-LTE; Radiation transfer



  1